deuteron definition - Search
Open links in new tab
  1. Copilot Answer
    Deuterium - Wikipedia

    Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more common H has no neutrons.

    The name deuterium comes from Greek deuteros, meaning "second". American chemist Harold Ureydiscovered deuterium in 1931. Ur…

    Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more common H has no neutrons.

    The name deuterium comes from Greek deuteros, meaning "second". American chemist Harold Urey discovered deuterium in 1931. Urey and others produced samples of heavy water in which the H had been highly concentrated. The discovery of deuterium won Urey a Nobel Prize in 1934.

    Nearly all deuterium found in nature was synthesized in the Big Bang 13.8 billion years ago, forming the primordial ratio of H to H (≈26 deuterium nuclei per 10 hydrogen nuclei). Deuterium is subsequently produced by the slow stellar proton–proton chain, but rapidly destroyed by exothermic fusion reactions. The deuterium-deuterium reaction has the second-lowest energy threshold, and is the most astrophysically accessible, occurring in both stars and brown dwarfs.

    Read more on Wikipedia

    Wikipedia

    Deuterium is often represented by the chemical symbol D. Since it is an isotope of hydrogen with mass number 2, it is also represented by H. IUPAC allows both D and H, though H is preferred. A distinct chemical symbol is used for convenience because of the isotope's common use in various scientific processes. Also, its large mass difference with protium ( H) confers non-negligible chemical differences with H compounds. Deuterium has a mass of 2.014102 Da, about twice the mean hydrogen atomic weight of 1.007947 Da, or twice protium's mass of 1.007825 Da. The isotope weight ratios within other elements are largely insignificant in this regard.
    In quantum mechanics, the energy levels of electrons in atoms depend on the reduced mass of the system of electron and nucleus. For a hydrogen atom, the role of reduced mass is most simply seen in the Bohr model of the atom, where the reduced mass appears in a simple calculation of the Rydberg constant and Rydberg equation, but the reduced mass also appears in the Schrödinger equation, and the Dirac equation for calculating atomic energy levels.

    The reduced mass of the system in these equations is close to the mass of a single electron, but differs from it by a small amount about equal to the ratio of mass of the electron to the nucleus. For H, this amount is about ⁠1837/1836⁠, or 1.000545, and for H it is even smaller: ⁠3671/3670⁠, or 1.0002725. The energies of electronic spectra lines for H and H therefore differ by the ratio of these two numbers, which is 1.000272. The wavelengths of all deuterium spectroscopic lines are shorter than the corresponding lines of light hydrogen, by 0.0272%. In astronomical observation, this corresponds to a blue Doppler shift of 0.0272% of the speed of light, or 81.6 km/s.

    The differences are much more pronounced in vibrational spectroscopy such as infrared spectroscopy and Raman spectroscopy, and in rotational spectra such as microwave spectroscopy because the reduced mass of the deuterium is markedly higher than that of protium. In nuclear magnetic resonance spectroscopy, deuterium has a very different NMR frequency (e.g. 61 MHz when protium is at 400 MHz) and is much less sensitive. Deuterated solvents are usually used in protium NMR to prevent the solvent from overlapping with the signal, though deuterium NMR on its own right is also possible.
    Deuterium is thought to have played an important role in setting the number and ratios of the elements that were formed in the Big Bang. Combining thermodynamics and the changes brought about by cosmic expansion, one can calculate the fraction of protons and neutrons based on the temperature at the point that the universe cooled enough to allow formation of nuclei. This calculation indicates seven protons for every neutron at the beginning of nucleogenesis, a ratio that would remain stable e…

    Read more on Wikipedia

    Continue reading

    Formula: D2 or 1H 2
    • Density: 0.180 kg/m at STP (0 °C, 101325 Pa).
    • Atomic weight: 2.0141017926 Da.
    • Mean abundance in ocean water (from VSMOW) 155.76 ± 0.1 atoms of deuterium per million atoms of all isotopes of hydrogen (about 1 atom of in 6420); that is, about 0.015% of all atoms of hydrogen (any isotope)
    Data at about 18 K for H2 (triple point):
    • Density:
    • Viscosity: 12.6 μPa·s at 300 K (gas phase)
    • Specific heat capacity at constant pressure cp:
    Compared to hydrogen in its natural composition on Earth, pure deuterium ( H2) has a higher melting point (18.72 K vs. 13.99 K), a higher boiling point (23.64 vs. 20.27 K), a higher critical temperature (38.3 vs. 32.94 K) and a higher critical pressure (1.6496 vs. 1.2858 MPa).

    The physical properties of deuterium compounds can exhibit significant kinetic isotope effects and other physical and chemical property differences from the protium analogs. H2O, for example, is more viscous than normal H2O. There are differences in bond energy and length for compounds of heavy hydrogen isotopes compared to protium, which are larger than the isotopic differences in any other element. Bonds involving deuterium and tritium are somewhat stronger than the corresponding bonds in protium, and these differences are enough to cause significant changes in biological reactions. Pharmaceutical firms are interested in the fact that H is harder to remove from carbon than H.

    Deuterium can replace H in water molecules to form heavy water ( H2O), which is about 10.6% denser than normal water (so that ice made from it sinks in normal water). Heavy water is slightly toxic in eukaryotic animals, with 25% substitution of the body water causing cell division problems and sterility, and 50% substitution causing death by cytotoxic syndrome (bone marrow failure and gastrointestinal lining failure). Prokaryotic organisms, however, can survive and grow in pure heavy water, though they develop slowly. Despite this toxicity, consumption of heavy water under normal circumstances does not pose a health threat to humans. It is estimated that a 70 kg (154 lb) person might drink 4.8 litres (1.3 US gal) of heavy water without serious consequences. Small doses of heavy water (a few grams in humans, containing an amount of deuterium comparable to that normally present in the body) are routinely used as harmless metabolic tracers in humans and animals.
    The deuteron has spin +1 ("triplet state") and is thus a boson. The NMR frequency of deuterium is significantly different from normal hydrogen. Infrared spectroscopy also easily differentiates many deuterated compounds, due to the large difference in IR absorption frequency seen in the vibration of a chemical bond containing deuterium, versus light hydrogen. The two stable isotopes of hydrogen can also be distinguished by using mass spectrometry.

    The triplet deuteron nucleon is barely bound at EB = 2.23 MeV, and none of the higher energy states are bound. The singlet deuteron is a virtual state, with a negative binding energy of ~60 keV. There is no such stable particle, but this …

    Read more on Wikipedia

    Continue reading

    Deuterium is used in heavy water moderated fission reactors, usually as liquid H2O, to slow neutrons without the high neutron absorption of ordinary hydrogen. This is a common commercial use for larger amounts of deuterium.

    In research reactors, liquid H2 is used in cold sources to moderate neutrons to very low energies and wavelengths appropriate for scattering experiments.

    Experimentally, deuterium is the most common nuclide used in fusion reactor designs, especially in combination with tritium, because of the large reaction rate (or nuclear cross section) and high energy yield of the deuterium–tritium (DT) reaction. There is an even higher-yield H– He fusion reaction, though the breakeven point of H– He is higher than that of most other fusion reactions; together with the scarcity of He, this makes it implausible as a practical power source, at least until DT and deuterium–deuterium (DD) fusion have been performed on a commercial scale. Commercial nuclear fusion is not yet an accomplished technology.
    Deuterium is most commonly used in hydrogen nuclear magnetic resonance spectroscopy (proton NMR) in the following way. NMR ordinarily requires compounds of interest to be analyzed as dissolved in solution. Because of deuterium's nuclear spin properties which differ from the light hydrogen usually present in organic molecules, NMR spectra of hydrogen/protium are highly differentiable from that of deuterium, and in practice deuterium is not "seen" by an NMR instrument tuned for H. Deuterated solvents (including heavy water, but also compounds like deuterated chloroform, CDCl3 or C HCl3, are therefore routinely used in NMR spectroscopy, in order to allow only the light-hydrogen spectra of the compound of interest to be measured, without solvent-signal interference.

    Nuclear magnetic resonance spectroscopy can also be used to obtain information about the deuteron's environment in isotopically labelled samples (deuterium NMR). For example, the configuration of hydrocarbon chains in lipid bilayers can be quantified using solid state deuterium NMR with deuterium-labelled lipid molecules.

    Deuterium NMR spectra are especially informative in the solid state because of its relatively small quadrupole moment in comparison with those of bigger quadrupolar nuclei such as chlorine-35, for example.
    Deuterated (i.e. where all or some hydrogen atoms are replaced with deuterium) compounds are often used as internal standards in mass spectrometry. Like other isotopically labeled species, such standards improve accuracy, while often at a much lower cost than other isotopically labeled standards. De…

    Read more on Wikipedia

    Continue reading

    The existence of nonradioactive isotopes of lighter elements had been suspected in studies of neon as early as 1913, and proven by mass spectrometry of light elements in 1920. At that time the neutron had not yet been discovered, and the prevailing theory was that isotopes of an element differ by the existence of additional protons in the nucleus accompanied by an equal number of nuclear electrons. In this theory, the deuterium nucleus with mass two and charge one would contain two protons and one nuclear electron. However, it was expected that the element hydrogen with a measured average atomic mass very close to 1 Da, the known mass of the proton, always has a nucleus composed of a single proton (a known particle), and could not contain a second proton. Thus, hydrogen was thought to have no heavy isotopes.
    It was first detected spectroscopically in late 1931 by Harold Urey, a chemist at Columbia University. Urey's collaborator, Ferdinand Brickwedde, distilled five liters of cryogenically produced liquid hydrogen to 1 mL of liquid, using the low-temperature physics laboratory that had recently been established at the National Bureau of Standards (now National Institute of Standards and Technology) in Washington, DC. The technique had previously been used to isolate heavy isotopes of neon. The cryogenic boiloff technique concentrated the fraction of the mass-2 isotope of hydrogen to a degree that made its spectroscopic identification unambiguous.
    Urey created the names protium, deuterium, and tritium in an article published in 1934. The name is based in part on advice from Gilbert N. Lewis who had proposed the name "deutium". The name comes from Greek deuteros 'second', and the nucleus was to be called a "deuteron" or "deuton". Isotopes and new elements were traditionally given the name that their discoverer decided. Some British scientists, such as Ernest Rutherford, wanted to call the isotope "diplogen", from Greek diploos 'double', and the nucleus to be called "diplon".

    The amount inferred for normal abundance of deuterium was so small (only about 1 atom in 6400 hydrogen atoms in seawater [156 parts per million]) that it had not noticeably affected previous measurements of (average) hydrogen atomic mass. This explained why it hadn't been suspected before. Urey was able to concentrate water to show partial enrichment of deuterium. Lewis, Urey's graduate advisor at Berkeley, had prepared and characterized the first samples of pure heavy water in 1933. The discovery of deuterium, coming before the discovery of the neutron in 1932, was an experimental shock to theory; but when the neutron was reported, making deuterium's existence more explicable, Urey was awarded the Nobel Prize in Chemistry only three years after the isotope's isolation. Lewis was deeply disappointed by the Nobel Committee's decision in 1934 and several high-ranking administrators at Berkeley beli…

    Read more on Wikipedia

    Continue reading
  1. Bokep

    https://viralbokep.com/viral+bokep+terbaru+2021&FORM=R5FD6

    Aug 11, 2021 · Bokep Indo Skandal Baru 2021 Lagi Viral - Nonton Bokep hanya Itubokep.shop Bokep Indo Skandal Baru 2021 Lagi Viral, Situs nonton film bokep terbaru dan terlengkap 2020 Bokep ABG Indonesia Bokep Viral 2020, Nonton Video Bokep, Film Bokep, Video Bokep Terbaru, Video Bokep Indo, Video Bokep Barat, Video Bokep Jepang, Video Bokep, Streaming Video …

    Kizdar net | Kizdar net | Кыздар Нет

  2. Some results have been removed