freshwater wetlands examples - Search
Open links in new tab
  1. Copilot Answer
    Wetland - Wikipedia

    A wetland is a distinct semi-aquatic ecosystem whose groundcovers are flooded or saturated in water, either permanently, for years or decades, or only seasonally. Flooding results in oxygen-poor (anoxic) processes taking place, especially in the soils. Wetlands form a transitional zone between waterbodies and dry lands, and are different from other terrestrial or aquatic ecosystems due to their vegetation's rootshaving adapted to oxygen-p…

    A wetland is a distinct semi-aquatic ecosystem whose groundcovers are flooded or saturated in water, either permanently, for years or decades, or only seasonally. Flooding results in oxygen-poor (anoxic) processes taking place, especially in the soils. Wetlands form a transitional zone between waterbodies and dry lands, and are different from other terrestrial or aquatic ecosystems due to their vegetation's roots having adapted to oxygen-poor waterlogged soils. They are considered among the most biologically diverse of all ecosystems, serving as habitats to a wide range of aquatic and semi-aquatic plants and animals, with often improved water quality due to plant removal of excess nutrients such as nitrates and phosphorus.

    Wetlands exist on every continent, except Antarctica. The water in wetlands is either freshwater, brackish or saltwater. The main types of wetland are defined based on the dominant plants and the source of the water. For example, marshes are wetlands dominated by emergent herbaceous vegetation such as reeds, cattails and sedges. Swamps are dominated by woody vegetation such …

    Read more on Wikipedia

    Wikipedia

    A simplified definition of wetland is "an area of land that is usually saturated with water". More precisely, wetlands are areas where "water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year, including during the growing season". A patch of land that develops pools of water after a rain storm would not necessarily be considered a "wetland", even though the land is wet. Wetlands have unique characteristics: they are generally distinguished from other water bodies or landforms based on their water level and on the types of plants that live within them. Specifically, wetlands are characterized as having a water table that stands at or near the land surface for a long enough period each year to support aquatic plants.

    A more concise definition is a community composed of hydric soil and hydrophytes.

    Wetlands have also been described as ecotones, providing a transition between dry land and water bodies. Wetlands exist "...at the interface between truly terrestrial ecosystems and aquatic systems, making them inherently different from each other, yet highly dependent on both."

    In environmental decision-making, there are subsets of definitions that are agreed upon to make regulatory and policy decisions.

    Under the Ramsar international wetland conservation treaty, wetlands are defined as follows:
    • Article 1.1: "...wetlands are areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six meters."
    • Article 2.1: "[Wetlands] may incorporate riparian and coastal zones adjacent to the wetlands, and islands or bodies of marine water deeper than six meters at low tide lying within the wetlands."
    An ecological definition of a wetland is "an ecosystem that arises when inundation by water produces soils dominated by anaerobic and aerobic processes, which, in turn, forces the biota, particularly rooted plants, to adapt to flooding".

    Sometimes a precise legal definition of a wetland is required. The definition used for regulation by the United States government is: 'The term "wetlands" means those areas that are inundated or saturated by surface or ground water at a frequency and duration to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally included swamps, marshes, bogs, and similar areas.'

    For each of these definitions and others, regardless of the purpose, hydrology is emphasized (shallow waters, water-logged soils). The soil characteristics and the plants and animals controlled by the wetland hydrology are often additional components of the definitions.
    Wetlands can be tidal (inundated by tides) or non-tidal. The water in wetlands is either freshwater, brackish, saline, or alkaline. There are four main kinds of wetl…

    Read more on Wikipedia

    Continue reading

    Wetlands vary widely due to local and regional differences in topography, hydrology, vegetation, and other factors, including human involvement. Other important factors include fertility, natural disturbance, competition, herbivory, burial and salinity. When peat accumulates, bogs and fens arise.
    The most important factor producing wetlands is hydrology, or flooding. The duration of flooding or prolonged soil saturation by groundwater determines whether the resulting wetland has aquatic, marsh or swamp vegetation. Other important factors include soil fertility, natural disturbance, competition, herbivory, burial, and salinity. When peat from dead plants accumulates, bogs and fens develop.

    Wetland hydrology is associated with the spatial and temporal dispersion, flow, and physio-chemical attributes of surface and ground waters. Sources of hydrological flows into wetlands are predominantly precipitation, surface water (saltwater or freshwater), and groundwater. Water flows out of wetlands by evapotranspiration, surface flows and tides, and subsurface water outflow. Hydrodynamics (the movement of water through and from a wetland) affects hydro-periods (temporal fluctuations in water levels) by controlling the water balance and water storage within a wetland.

    Landscape characteristics control wetland hydrology and water chemistry. The O2 and CO2 concentrations of water depend upon temperature, atmospheric pressure and mixing with the air (from winds or water flows). Water chemistry within wetlands is determined by the pH, salinity, nutrients, conductivity, soil composition, hardness, and the sources of water. Water chemistry varies across landscapes and climatic regions. Wetlands are generally minerotrophic (waters contain dissolved materials from soils) with the exception of ombrotrophic bogs that are fed only by water from precipitation.

    Because bogs receive most of their water from precipitation and humidity from the atmosphere, their water usually has low mineral ionic composition. In contrast, wetlands fed by groundwater or tides have a higher concentration of dissolved nutrients and minerals.

    Fen peatlands receive water both from precipitation and ground water in varying amounts so their water chemistry ranges from acidic with low levels of dissolved minerals to alkaline with high accumulation of calcium and magnesium.
    Salinity has a strong influence on wetland water chemistry, particularly in coastal wetlands and in arid and semiarid regions with large precipitation deficits. Natural salinity is regulated by interactions between ground and surface water, which may be influenced by human activity.

    Read more on Wikipedia

    Continue reading

    The life forms of a wetland system includes its plants (flora) and animals (fauna) and microbes (bacteria, fungi). The most important factor is the wetland's duration of flooding. Other important factors include fertility and salinity of the water or soils. The chemistry of water flowing into wetlands depends on the source of water, the geological material that it flows through and the nutrients discharged from organic matter in the soils and plants at higher elevations. Plants and animals may vary within a wetland seasonally or in response to flood regimes.
    There are four main groups of hydrophytes that are found in wetland systems throughout the world.

    Submerged wetland vegetation can grow in saline and fresh-water conditions. Some species have underwater flowers, while others have long stems to allow the flowers to reach the surface. Submerged species provide a food source for native fauna, habitat for invertebrates, and also possess filtration capabilities. Examples include seagrasses and eelgrass.

    Floating water plants or floating vegetation are usually small, like those in the Lemnoideae subfamily (duckweeds). Emergent vegetation like the cattails (Typha spp.), sedges (Carex spp.) and arrow arum (Peltandra virginica) rise above the surface of the water.

    When trees and shrubs comprise much of the plant cover in saturated soils, those areas in most cases are called swamps. The upland boundary of swamps is determined partly by water levels. This can be affected by dams Some swamps can be dominated by a single species, such as silver maple swamps around the Great Lakes. Others, like those of the Amazon basin, have large numbers of different tree species. Other examples include cypress (Taxodium) and mangrove swamps.
    Many species of fish are highly dependent on wetland ecosystems. Seventy-five percent of the United States' commercial fish and shellfish stocks depend solely on estuaries to survive.

    Amphibians such as frogs and salamanders need both terrestrial and aquatic habitats in which to reproduce and feed. Because amphibians often inhabit depressional wetlands like prairie potholes and Carolina bays, the connectivity among these isolated wetlands is an important control of regional populations. While tadpoles feed on algae, adult frogs forage on insects. Frogs are sometimes used as an indicator of ecosystem health because their thin skin permits absorption of nutrients and toxins from the surrounding environment resulting in increased extinction rates in unfavorable and polluted environmental conditions.

    Reptiles such …

    Read more on Wikipedia

    Continue reading

    Depending on a wetland's geographic and topographic location, the functions it performs can support multiple ecosystem services, values, or benefits. United Nations Millennium Ecosystem Assessment and Ramsar Convention described wetlands as a whole to be of biosphere significance and societal importance in the following areas:
    • Water storage (flood control)
    • Groundwater replenishment
    • Shoreline stabilization and storm protection
    • Water purification
    • Wastewater treatment (in constructed wetlands)
    • Reservoirs of biodiversity
    • Pollination
    • Wetland products
    • Cultural values
    • Recreation and tourism
    • Climate change mitigation and adaptation
    According to the Ramsar Convention:

    The economic worth of the ecosystem services provided to society by intact, naturally functioning wetlands is frequently much greater than the perceived benefits of converting them to 'more valuable' intensive land use – particularly as the profits from unsustainable use often go to relatively few individuals or corporations, rather than being shared by society as a whole.

    To replace these wetland ecosystem services, enormous amounts of money would need to be spent on water purification plants, dams, levees, and other hard infrastructure, and many of the services are impossible to replace.
    Floodplains and closed-depression wetlands can provide the functions of storage reservoirs and flood protection. The wetland system of floodplains is formed from major rivers downstream from their headwaters. "The floodplains of major rivers act as natural storage reservoirs, enabling excess water to spread out over a wide area, which reduces its depth and speed. Wetlands close to the headwaters of streams and rivers can slow down rainwater runoff and spring snowmelt so that it does not run straight off the land into water courses. This can help prevent sudden, damaging floods downstream."

    Notable river systems that produce wide floodplains include the Nile River, the Niger river inland delta, the Zambezi River flood plain, the Okavango River inland delta, the Kafue River flood plain, the Lake Bangweulu flood plain (Africa), Mississippi River

    Read more on Wikipedia

    Continue reading
     
  1. Bokep

    https://viralbokep.com/viral+bokep+terbaru+2021&FORM=R5FD6

    Aug 11, 2021 Â· Bokep Indo Skandal Baru 2021 Lagi Viral - Nonton Bokep hanya Itubokep.shop Bokep Indo Skandal Baru 2021 Lagi Viral, Situs nonton film bokep terbaru dan terlengkap 2020 Bokep ABG Indonesia Bokep Viral 2020, Nonton Video Bokep, Film Bokep, Video Bokep Terbaru, Video Bokep Indo, Video Bokep Barat, Video Bokep Jepang, Video Bokep, Streaming Video …

    Kizdar net | Kizdar net | Кыздар Нет