Oceans of the World Climate - Search
Open links in new tab
  1. Copilot Answer
    Effects of climate change on oceans - Wikipedia

    There are many effects of climate change on oceans. One of the most important is an increase in ocean temperatures. More frequent marine heatwaves are linked to this. The rising temperature contributes to a rise in sea levels due to the expansion of water as it warms and the melting of ice sheets on land. Other effects on oceans include sea ice decline, reducing pH values and oxygen levels, as well as increased ocean stratification. All this can l…

    There are many effects of climate change on oceans. One of the most important is an increase in ocean temperatures. More frequent marine heatwaves are linked to this. The rising temperature contributes to a rise in sea levels due to the expansion of water as it warms and the melting of ice sheets on land. Other effects on oceans include sea ice decline, reducing pH values and oxygen levels, as well as increased ocean stratification. All this can lead to changes of ocean currents, for example a weakening of the Atlantic meridional overturning circulation (AMOC). The main cause of these changes are the emissions of greenhouse gases from human activities, mainly burning of fossil fuels and deforestation. Carbon dioxide and methane are examples of greenhouse gases. The additional greenhouse effect leads to ocean warming because the ocean takes up most of the additional heat in the climate system. The ocean also absorbs some of the extra carbon dioxide that is in the atmosphere. This causes the pH value of the seawater to drop. Scientists estimate that the ocean absorbs about 25% of all human-caused CO2 emissions.

    The …

    Read more on Wikipedia

    Wikipedia

    Presently (2020), atmospheric carbon dioxide (CO2) levels of more than 410 parts per million (ppm) are nearly 50% higher than preindustrial levels. These elevated levels and rapid growth rates are unprecedented in the geological record's 55 million years. The source for this excess CO2 is clearly established as human-driven, reflecting a mix of fossil fuel burning, industrial, and land-use/land-change emissions. The idea that the ocean serves as a major sink for anthropogenic CO2 has been discussed in scientific literature since at least the late 1950s. Several pieces of evidence point to the ocean absorbing roughly a quarter of total anthropogenic CO2 emissions.

    The latest key findings about the observed changes and impacts from 2019 include:

    It is virtually certain that the global ocean has warmed unabated since 1970 and has taken up more than 90% of the excess heat in the climate system [...]. Since 1993, the rate of ocean warming has more than doubled [...]. Marine heatwaves have very likely doubled in frequency since 1982 and are increasing in intensity [...]. By absorbing more CO2, the ocean has undergone increasing surface acidification [...]. A loss of oxygen has occurred from the surface to 1000 m [...].— IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019),
    It is clear that the ocean is warming as a result of climate change, and this rate of warming is increasing. The global ocean was the warmest it had ever been recorded by humans in 2022. This is determined by the ocean heat content, which exceeded the previous 2021 maximum in 2022. The steady rise in ocean temperatures is an unavoidable result of the Earth's energy imbalance, which is primarily caused by rising levels of greenhouse gases. Between pre-industrial times and the 2011–2020 decade, the ocean's surface has heated between 0.68 and 1.01 °C.

    The majority of ocean heat gain occurs in the Southern Ocean. For example, between the 1950s and the 1980s, the temperature of the Antarctic Southern Ocean rose by 0.17 °C (0.31 °F), nearly twice the rate of the global ocean.

    The warming rate varies with depth. The upper ocean (above 700 m) is warming the fastest. At an ocean depth of a thousand metres the warming occurs at a rate of nearly 0.4 °C per century (data from 1981 to 2019). In deeper zones of the ocean (globally speaking), at 2000 metres depth, the warming has been around 0.1 °C per century. The warming pattern is different for the Antarctic Ocean (at 55°S), where the highest warming (0.3 °C per century) has been observed at a depth o…

    Read more on Wikipedia

    Continue reading

    Many coastal cities will experience coastal flooding in the coming decades and beyond. Local subsidence, which may be natural but can be increased by human activity, can exacerbate coastal flooding. Coastal flooding will threaten hundreds of millions of people by 2050, particularly in Southeast Asia.
    Ocean currents are caused by temperature variations caused by sunlight and air temperatures at various latitudes, as well as prevailing winds and the different densities of salt and fresh water. Warm air rises near the equator. Later, as it moves toward the poles, it cools again. Cool air sinks near the poles, but warms and rises again as it moves toward the equator. This produces Hadley cells, which are large-scale wind patterns, with similar effects driving a mid-latitude cell in each hemisphere. Wind patterns associated with these circulation cells drive surface currents which push the surface water to higher latitudes where the air is colder. This cools the water, causing it to become very dense in comparison to lower latitude waters, causing it to sink to the ocean floor, forming North Atlantic Deep Water (NADW) in the north and Antarctic Bottom Water (AABW) in the south.

    Driven by this sinking and the upwelling that occurs in lower latitudes, as well as the driving force of the winds on surface water, the ocean currents act to circulate water throughout the sea. When global warming is factored in, changes occur, particularly in areas where deep water is formed. As the oceans warm and glaciers and polar ice caps melt, more and more fresh water is released into the high latitude regions where deep water forms, lowering the density of the surface water. As a result, the water sinks more slowly than it would normally.

    The Atlantic Meridional Overturning Circulation (AMOC) may have weakened since the preindustrial era, according to modern observations and paleoclimate reconstructions (the AMOC is part of a global thermohaline circulation), but there is too much uncertainty in the data to know for certain. Climate change projections assessed in 2021 indicate that the AMOC is very likely to weaken over the course of the 21st century. A weakening of this magnitude could have a significant impact on global climate, with the North Atlantic being particularly vulnerable.

    Any changes in ocean currents affect the ocean's ability to absorb carbon dioxide (which is affected by water temperature) as well as ocean productivity because the currents transport nutrients (see Impacts on phytoplankton and net primary production). Because the AMOC deep ocean circulation is slow (it takes hundreds to thousands of years to circulate the entire ocean), it is slow to respond to climate change.
    Changes in ocean stratification are significant because they ca…

    Read more on Wikipedia

    Continue reading

    The process of photosynthesis in the surface ocean releases oxygen and consumes carbon dioxide. This photosynthesis in the ocean is dominated by phytoplankton – microscopic free-floating algae. After the plants grow, bacterial decomposition of the organic matter formed by photosynthesis in the ocean consumes oxygen and releases carbon dioxide. The sinking and bacterial decomposition of some organic matter in deep ocean water, at depths where the waters are out of contact with the atmosphere, leads to a reduction in oxygen concentrations and increase in carbon dioxide, carbonate and bicarbonate. This cycling of carbon dioxide in oceans is an important part of the global carbon cycle.

    The photosynthesis in surface waters consumes nutrients (e.g. nitrogen and phosphorus) and transfers these nutrients to deep water as the organic matter produced by photosynthesis sinks upon the death of the organisms. Productivity in surface waters therefore depends in part on the transfer of nutrients from deep water back to the surface by ocean mixing and currents. The increasing stratification of the oceans due to climate change therefore acts generally to reduce ocean productivity. However, in some areas, such as previously ice covered regions, productivity may increase. This trend is already observable and is projected to continue under current projected climate change. In the Indian Ocean for example, productivity is estimated to have declined over the past sixty years due to climate warming and is projected to continue.

    Ocean productivity under a very high emission scenario (RCP8.5) is very likely to drop by 4-11% by 2100. The decline will show regional variations. For example, the tropical ocean NPP will decline more: by 7–16% for the same emissions scenario. Less organic matter will likely sink from the upper oceans into deeper ocean layers due to increased ocean stratification and a reduction in nutrient supply. The reduction in ocean productivity is due to the "combined effects of warming, stratification, light, nutrients and predation".
    Although the drivers of harmful algal blooms (HABs) are poorly understood, they appear to have increased in range and frequency in coastal areas since the 1980s. This is the result of human induced factors such as increased nutrient inputs (nutrient pollution) and climate change (in particular the warming of water temperatures). The parameters that affect the formation of HABs are ocean warming, marine heatwaves, oxygen loss, eutrophication and water pollution. These increases in HABs are of concern because of the impact of their occurrence on local food security, tourism and the economy.

    It is however also possible that the perceived increase in HABs globally is simply due to more severe bloom impacts and bett…

    Read more on Wikipedia

    Continue reading

    While some mobile marine species can migrate in response to climate change, others such as corals find this much more difficult. A coral reef is an underwater ecosystem characterised by reef-building corals. Reefs are formed by colonies of coral polyps held together by calcium carbonate. Coral reefs are important centres of biodiversity and vital to millions of people who rely on them for coastal protection, food and for sustaining tourism in many regions.

    Warm water corals are clearly in decline, with losses of 50% over the last 30–50 years due to multiple threats from ocean warming, ocean acidification, pollution and physical damage from activities such as fishing. These pressures are expected to intensify.

    The warming ocean surface waters can lead to bleaching of the corals which can cause serious damage and/or coral death. The IPCC Sixth Assessment Report in 2022 found that: "Since the early 1980s, the frequency and severity of mass coral bleaching events have increased sharply worldwide". Marine heatwaves have caused coral reef mass mortality. It is expected that many coral reefs will suffer irreversible changes and loss due to marine heatwaves with global temperatures increasing by more than 1.5 °C.

    Coral bleaching occurs when thermal stress from a warming ocean results in the expulsion of the symbiotic algae that resides within coral tissues. These symbiotic algae are the reason for the bright, vibrant colors of coral reefs. A 1-2°C sustained increase in seawater temperatures is sufficient for bleaching to occur, which turns corals white. If a coral is bleached for a prolonged period of time, death may result. In the Great Barrier Reef, before 1998 there were no such events. The first event happened in 1998 and after that, they began to occur more frequently. Between 2016 and 2020 there were three of them.

    Apart from coral bleaching, the reducing pH value in oceans is also a problem for coral reefs because ocean acidification reduces coralline algal biodiversity. The physiology of coralline algal calcification determines how the algae will respond to ocean acidification.

    Continue reading
  1. Bokep

    https://viralbokep.com/viral+bokep+terbaru+2021&FORM=R5FD6

    Aug 11, 2021 Â· Bokep Indo Skandal Baru 2021 Lagi Viral - Nonton Bokep hanya Itubokep.shop Bokep Indo Skandal Baru 2021 Lagi Viral, Situs nonton film bokep terbaru dan terlengkap 2020 Bokep ABG Indonesia Bokep Viral 2020, Nonton Video Bokep, Film Bokep, Video Bokep Terbaru, Video Bokep Indo, Video Bokep Barat, Video Bokep Jepang, Video Bokep, Streaming Video …

    Kizdar net | Kizdar net | Кыздар Нет