Evolution by natural selection - Search
Open links in new tab
  1. Copilot Answer
    Natural selection - Wikipedia

    A prerequisite for natural selection to result in adaptive evolution, novel traits and speciation is the presence of heritable genetic variation that results in fitness differences. Genetic variation is the result of mutations, genetic recombinations and alterations in the karyotype (the number, shape, size and internal arrangement of the chromosomes). Any of these changes might have an effect that is highly advantageous or highly disadvantageous, but larg…

    A prerequisite for natural selection to result in adaptive evolution, novel traits and speciation is the presence of heritable genetic variation that results in fitness differences. Genetic variation is the result of mutations, genetic recombinations and alterations in the karyotype (the number, shape, size and internal arrangement of the chromosomes). Any of these changes might have an effect that is highly advantageous or highly disadvantageous, but large effects are rare. In the past, most changes in the genetic material were considered neutral or close to neutral because they occurred in noncoding DNA or resulted in a synonymous substitution. However, many mutations in non-coding DNA have deleterious effects. Although both mutation rates and average fitness effects of mutations are dependent on the organism, a majority of mutations in humans are slightly deleterious.

    Some mutations occur in "toolkit" or regulatory genes. Changes in these often have large effects on the phenotype of the individual because they regulate the function of many other genes. Most, but not all, mutations in regulatory genes result in non-viable embryos. Some nonlethal regulatory mutations occur in HOX genes in humans, which can result in a cervical rib or polydactyly, an increase in the number of fingers or toes. When such mutations result in a higher fitness, natural selection favours these phenotypes and the novel trait spreads in the …

    Read more on Wikipedia

    Wikipedia

    Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Charles Darwin popularised the term "natural selection", contrasting it with artificial selection, which is intentional, whereas natural selection is not.

    Variation of traits, both genotypic and phenotypic, exists within all populations of organisms. However, some traits are more likely to facilitate survival and reproductive success. Thus, these traits are passed onto the next generation. These traits can also become more common within a population if the environment that favours these traits remains fixed. If new traits become more favored due to changes in a specific niche, microevolution occurs. If new traits become more favored due to changes in the broader environment, macroevolution occurs. Sometimes, new species can arise especially if these new traits are radically different from the traits possessed by their predecessors.

    The likelihood of these traits being 'selected' and passed down are determined by many factors. Some are likely to be passed down because they adapt well to their environments. Others are passed down because these traits are actively preferred by mating partners, which is known as sexual selection. Female bodies also prefer traits that confer the lowest cost to their reproductive health, which is known as fecundity selection.

    Natural selection is a cornerstone of modern biology. The concept, published by Darwin and Alfred Russel Wallace in a joint presentation of papers in 1858, was elaborated in Darwin's influential 1859 book On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. He described natural selection as analogous to artificial selection, a process by which animals and plants with traits considered desirable by human breeders are systematically favoured for reproduction. The concept of natural selection originally developed in the absence of a valid theory of heredity; at the time of Darwin's writing, science had yet to develop modern theories of genetics. The union of traditional Darwinian evolution with subsequent discoveries in classical genetics formed the modern synthesis of the mid-20th century. The addition of molecular genetics has led to evolutionary developmental biology, which explains evolution at the molecular level. While genotypes can slowly change by random genetic drift, natural selection remains the primary explanation for adaptive evolution.

    Continue reading

    Several philosophers of the classical era, including Empedocles and his intellectual successor, the Roman poet Lucretius, expressed the idea that nature produces a huge variety of creatures, randomly, and that only those creatures that manage to provide for themselves and reproduce successfully persist. Empedocles' idea that organisms arose entirely by the incidental workings of causes such as heat and cold was criticised by Aristotle in Book II of Physics. He posited natural teleology in its place, and believed that form was achieved for a purpose, citing the regularity of heredity in species as proof. Nevertheless, he accepted in his biology that new types of animals, monstrosities (τερας), can occur in very rare instances (Generation of Animals, Book IV). As quoted in Darwin's 1872 edition of The Origin of Species, Aristotle considered whether different forms (e.g., of teeth) might have appeared accidentally, but only the useful forms survived:

    So what hinders the different parts [of the body] from having this merely accidental relation in nature? as the teeth, for example, grow by necessity, the front ones sharp, adapted for dividing, and the grinders flat, and serviceable for masticating the food; since they were not made for the sake of this, but it was the result of accident. And in like manner as to the other parts in which there appears to exist an adaptation to an end. Wheresoever, therefore, all things together (that is all the parts of one whole) happened like as if they were made for the sake of something, these were preserved, having been appropriately constituted by an internal spontaneity, and whatsoever things were not thus constituted, perished, and still perish.— Aristotle, Physics, Book II, Chapter 8

    But Aristotle rejected this possibility in the next paragraph, making clear that he is talking about the development of animals as embryos with the phrase "either invariably or normally come about", not the origin of species:

    ... Yet it is impossible that this should be the true view. For teeth and all other natural things either invariably or normally come about in a given way; but of not one of the results of chance or spontaneity is this true. We do not ascribe to chance or mere coincidence the frequency of rain in winter, but frequent rain in summer we do; nor heat in the dog-days, but only if we have it in winter. If then, it is agreed that things are either the result of coincidence or for an end, and these cannot be the result of coincidence or spontaneity, it follows that they must be for an end; and that such things are all due to nature even the champions of the theory which is before us would agree. Therefore action for an end is present in things which come to be and are by nature.— Aristotle, Physics, Book II, Chapter 8

    The

    Read more on Wikipedia

    Continue reading

    The term natural selection is most often defined to operate on heritable traits, because these directly participate in evolution. However, natural selection is "blind" in the sense that changes in phenotype can give a reproductive advantage regardless of whether or not the trait is heritable. Following Darwin's primary usage, the term is used to refer both to the evolutionary consequence of blind selection and to its mechanisms. It is sometimes helpful to explicitly distinguish between selection's mechanisms and its effects; when this distinction is important, scientists define "(phenotypic) natural selection" specifically as "those mechanisms that contribute to the selection of individuals that reproduce", without regard to whether the basis of the selection is heritable. Traits that cause greater reproductive success of an organism are said to be selected for, while those that reduce success are selected against.

    Continue reading

    Natural variation occurs among the individuals of any population of organisms. Some differences may improve an individual's chances of surviving and reproducing such that its lifetime reproductive rate is increased, which means that it leaves more offspring. If the traits that give these individuals a reproductive advantage are also heritable, that is, passed from parent to offspring, then there will be differential reproduction, that is, a slightly higher proportion of fast rabbits or efficient algae in the next generation. Even if the reproductive advantage is very slight, over many generations any advantageous heritable trait becomes dominant in the population. In this way the natural environment of an organism "selects for" traits that confer a reproductive advantage, causing evolutionary change, as Darwin described. This gives the appearance of purpose, but in natural selection there is no intentional choice. Artificial selection is purposive where natural selection is not, though biologists often use teleological language to describe it.

    The peppered moth exists in both light and dark colours in Great Britain, but during the Industrial Revolution, many of the trees on which the moths rested became blackened by soot, giving the dark-coloured moths an advantage in hiding from predators. This gave dark-coloured moths a better chance of surviving to produce dark-coloured offspring, and in just fifty years from the first dark moth being caught, nearly all of the moths in industrial Manchester were dark. The balance was reversed by the effect of the Clean Air Act 1956, and the dark moths became rare again, demonstrating the influence of natural selection on peppered moth evolution. A recent study, using image analysis and avian vision models, shows that pale individuals more closely match lichen backgrounds than dark morphs and for the first time quantifies the camouflage of moths to predation risk.
    The concept of fitness is central to natural selection. In broad terms, individuals that are more "fit" have better potential for survival, as in the well-known phrase "survival of the fittest", but the precise meaning of the term is much more subtle. Modern evolutionary theory defines fitness not by how long an organism lives, but by how successful it is at reproducing. If an organism lives half as long as others of its species, but has twice as many offspring surviving to adulthood, its genes become more common in the adult population of the next generation. Though natural selection acts on individuals, the effects of chance mean that fitness can only really be defined "on average" for the individuals within a population. The fitness of a particular genotype corresponds to the average effect on all individuals with that genotype. A distinction must be made between the concept of "survival of the fittest" and "improvement in fitness". "Survival of the fittest" does not give an "improvement in fitness", it only represents the removal of the less fit variants f…

    Read more on Wikipedia

    Continue reading
    Feedback
     
  1. Bokep

    https://viralbokep.com/viral+bokep+terbaru+2021&FORM=R5FD6

    Aug 11, 2021 · Bokep Indo Skandal Baru 2021 Lagi Viral - Nonton Bokep hanya Itubokep.shop Bokep Indo Skandal Baru 2021 Lagi Viral, Situs nonton film bokep terbaru dan terlengkap 2020 Bokep ABG Indonesia Bokep Viral 2020, Nonton Video Bokep, Film Bokep, Video Bokep Terbaru, Video Bokep Indo, Video Bokep Barat, Video Bokep Jepang, Video Bokep, Streaming Video …

    Kizdar net | Kizdar net | Кыздар Нет

  2. Some results have been removed